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This review of the literature has summarized recent developments on cells implicated in 
the different phases of bone healing and their potential clinical applications including 
inflammatory phase (neutrophils, macrophages, mast cells), fibrovascular phase 
(endothelial cells and mesenchymal stem cells - MSCs), bone formation (osteoblasts, 
chondrocytes), and callus remodeling (osteoclasts). Some studies have confirmed the two 
well-known facts that alcohol intake and dexamethasone negatively affect bone healing. 
Other studies have shown that Aucubin, Bortezomib, and human umbilical cord MSCs 
(HUCMSCs)Wnt10b promote bone healing of bone fractures. However, more research is 
needed to confirm their actual utility in the clinical practice of bone fracture treatment. 

INTRODUCTION 

Bone fractures heal through two different mechanisms: Di-
rect (primary) or indirect (secondary) healing.1 Primary 
healing entails a direct shift of mesenchymal stem cells 
(MSCs) to bone-forming osteoblasts (intramembranous os-
sification). Secondary healing moves forward through a car-
tilage intermediate before a bone is created by osteoblasts 
(endochondral ossification).1,2 The cellular and molecular 
elements coordinating fracture callus creation and resolu-
tion are intricate and incredibly arranged. This article will 
mainly review secondary healing since most fractures clin-
ically heal in this mode. The mechanism of bone healing 
has a diversity of cellular constituents needed for the ad-
vancement of healing. Inflammatory cells (i.e., mast cells, 
macrophages, and neutrophils) are the first cellular con-
stituent of the fracture ambiance, followed by MSCs, en-
dothelial cells, chondrocytes, osteoblasts, and osteoclasts. 
The mechanism of fracture healing can be deemed in 
episodic temporal sections; however, it is essential to know 
that there is a substantial overhang of the temporal sec-
tions of healing, and associated cell categories exist to-
gether. This is a fundamental notion because cell-to-cell 
signaling, in a heterotypic way (across cell types), is beyond 
question crucial.1‑3 Figures  1  and  2 summarize the main 
phases of bone healing and the cells implicated in each. 
This article aimed to perform a narrative review of the 

literature on recent advances concerning cells involved in 

bone healing and their possible clinical applications. On 
December 26, 2022, a PubMed literature search used “cell 
bone repair” as a keyword. A total of 26,145 articles were 
found, of which 74 were analyzed that met our inclusion 
criteria. 

INFLAMMATORY PHASE – INFLAMMATORY 
CELLS 

This phase has three main parts: acute inflammation, re-
solving inflammation, and chronic inflammation. 

ACUTE INFLAMMATION 

Inflammatory cells are deposited along the clot during he-
morrhage, moving to the fracture site from local sources. 
One function of inflammatory cells, specifically neu-
trophils, macrophages, and mast cells, is the debridement 
of injured and devitalized tissue. Inflammatory cells also 
create cytokines that positively and negatively affect heal-
ing.4‑6 Some of these cytokines are found at the fracture 
site within the first 24 hours post-injury and are essential 
for expanding the inflammatory reaction by acting on cells 
in the bone marrow, periosteum, and hematoma.7,8 
Macrophages produce the pro-inflammatory molecule in-
terleukin-1 (IL-1). IL-1 controls the expression of cyclooxy-
genases (COX-1 and COX-2), which are the enzymes that 
form prostaglandins in the fracture site.9 In addition to 
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Figure 1. Phases of bone fracture healing.      

Figure 2. Cells implicated in the different phases of        
bone fracture healing.    

rendering inflammatory cytokines, inflammatory cells also 
create growth factors such as fibroblast growth factors 
(FGFs), platelet-derived growth factor (PDGF), and trans-
forming growth factor-beta (TGF-beta), which start the re-
pair mechanism by promoting proliferation and differenti-
ation of the MSCs that give rise to the fracture callus.10‑12 

RECENT ADVANCES IN NEUTROPHILS 

Zhang et al. found that in reaction to fracture injury, the 
percentages of neutrophils and associated plasma extracel-
lular vesicles (EVs) were substantially greater in fracture 
calluses than in peripheral blood.13 

RECENT ADVANCES IN MACROPHAGES 

It has been shown that dexamethasone diminishes the 
amount of macrophages at the injured area during early 
osseous repair following femoral bone injury partially 
through plasminogen activator inhibitor-1 (PAI-1) and 
macrophage colony-stimulating factor (M-CSF) in mice.14 
Kohara et al. have reported the relevance of urokinase plas-
minogen activator (uPA) and transforming growth factor 
beta 1 (TGF-β1) during osseous regeneration, showing a 
new process of osseous regeneration mediated by 
macrophages.15 

Toita et al. has exposed the pros of local M1-to-M2 
macrophage polarization prompted by phosphatidylserine-
containing liposomes (PSL)-multilayers constructed on im-
plants for efficacious osseous regeneration and osseoin-
tegration (bone-to-implant integration).16 It has been 
observed that macrophage recruitment scarcity in nearby 
soft tissue in early surgery for high-energy fractures could 
be a significant cause of atrophic nonunion.17 Baratchart 
et al. reported the following essential data: antiinflamma-
tory macrophages are crucial for early osteoclast constraint 
and proinflammatory macrophage suppression; proinflam-
matory macrophages are implicated in osteoclast osseous 
resorptive activity, but osteoblasts facilitate osteoclast dif-
ferentiation.18 

RECENT ADVANCES IN MAST CELLS 

It has been recently encountered that mast cells participate 
in trauma-caused impaired bone repair. It could be a pos-
sible objective for new treatment alternatives to facilitate 
fracture healing in multiple injured individuals.19 Fischer 
et al. have shown that mast cells adversely impact the heal-
ing of bone fractures under estrogen-deficient conditions. 
Targeting mast cells could be a new therapeutic strategy to 
ameliorate impaired bone repair in postmenopausal osteo-
porosis.20 

RESOLVING INFLAMMATION 

While the inflammatory stage of fracture healing starts 
during the earliest phases of repair, it has been shown that 
the inflammatory cells are also present throughout later 
stages and seem to experience changes as healing contin-
ues.21 Studies on fracture healing in mice lacking the tumor 
necrosis factor-alpha (TNF-alpha) receptor showed delays 
during acute inflammation and later phases of healing.22,
23 Additionally, IL-6 expression seems bimodal during frac-
ture healing, indicating a temporally specific function for 
inflammatory cytokines during bone repair.24 

CHRONIC INFLAMMATION 

Chronic, non-resolving inflammation is harmful to fracture 
healing. Experimental data have shown that fracture heal-
ing and osseointegration are disjointed in diseases where 
there is chronic, non-resolving inflammation, such as dia-
betes.25‑27 

FIBROVASCULAR PHASE – ENDOTHELIAL CELLS 
AND MSCS 

Following inflammation, the angio-mesenchymal stage of 
repair starts. This stage has been called the fibrovascular 
stage. It is characterized by vascular remodeling (angiogen-
esis and neovascularization) and recruitment of MSCs that 
eventually differentiate into chondrocytes and osteoblasts 
to regenerate the fractured bone. 
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REVASCULARIZATION 

During the initial fracture trauma, vascular supply is rein-
stituted quickly by developing a new vascular network.28 
Creation of the network happens by two distinct mecha-
nisms: Angiogenesis and vasculogenesis. Angiogenesis is 
how new blood vessels are created by blooming from ex-
isting vasculature. Vasculogenesis is the de novo creation 
of blood vessels from in situ endothelial progenitor cells 
(EPCs) within the callus. Endothelial cells forming callus 
vasculature can develop from several sources, including ex-
isting vessels of the periosteum and the intramedullary 
vasculature,29 circulating EPCs augmented during fracture 
repair,30,31or the bone marrow.32 
Vascular endothelial growth factor (VEGF) is a well-char-

acterized driver of angiogenesis and vasculogenesis.33 
VEGF is produced by several cells in the fracture callus, in-
cluding inflammatory cells, mesenchyme, osteoblasts, and 
hypertrophic chondrocytes. VEGF binds the VEGF family 
of receptors VEGFR1 (FLT1) and VEGFR2 (FLK1), activating 
signaling cascades that result in augmented proliferation 
and blooming of endothelial cells and recruitment of EPCs 
to the fracture.34 

ENDOTHELIAL CELLS AND MSCS 

Most MSCs recruited to the fracture site come from the lo-
cal periosteum and bone marrow. Recruitment of MSCs in 
the fracture repair process is under molecular control by 
cytokines released at the fracture site, especially CXCL12, 
also known as stromal cell-derived factor 1 (SDF1). The 
damaged periosteum liberates SDF1 and drives mobiliza-
tion and homing of MSCs through CXCR4.31 Notch signal-
ing is another possibly crucial factor in controlling MSC 
amount and activation.35 

RECENT ADVANCES IN ENDOTHELIAL CELLS 

He et al. have suggested that MSCs migrate toward en-
dothelial cells (ECs) via PDGF-BB/PDGFRβ and the down-
stream Src-Akt signal pathway in the inflammatory mi-
croenvironment.36 

RECENT ADVANCES IN MSCS 

Esposito et al. have identified a new population of en-
dosteal cells that is functionally controlled through the 
modulation of CXCR4 by IGF-1R signaling, and such control 
is crucial in osseous homeostasis and fracture healing. This 
knowledge could help in the development of new thera-
peutic methods by targeting CXCR4 signaling to manage 
nonunions.37 

According to Jeffery et al., distinct osseous injuries are 
repaired by particular skeletal stem/progenitor cells (SSCs), 
with periosteal cells regenerating bone and marrow stroma 
following non-stabilized fractures.38 TABLE 1  summarizes 
recent advances in MSCs.39‑47 

BONE FORMATION – OSTEOBLASTS AND 
CHONDROCYTES 

Following the fibrovascular stage of healing, many of the 
MSCs that formed the fibrovascular callus experience dif-
ferentiation to either osteoblasts or chondrocytes to start 
the bone formation stage of healing. Differentiation of 
MSCs into bi-potential osteochondral progenitor cells is 
initially regulated by Sox9.48 Factors controlling the choice 
of progenitor cells towards the chondrogenic or osteogenic 
destiny are multifactorial, integrated, and still being estab-
lished. Extrinsically, mechanical factors and oxygen tension 
are crucial variables in fate decisions.49,50 The aforemen-
tioned cell-extrinsic factors lead to particular cell-intrinsic 
regulation of chondrogenesis and osteoblastogenesis. Se-
creted growth factors also have a direct impact on MSCs 
differentiation. Bone morphogenetic proteins (BMPs) are 
the classic osteogenic molecules related to bone formation. 
The Wnt family is another secreted growth factor family 
that could play a role in controlling MSCs fate determina-
tion in bone healing.3 

INTRAMEMBRANOUS OSSIFICATION - OSTEOBLASTS 

Intramembranous bone creation from these endosteal stem 
cells is responsible for quickly bridging across the marrow 
cavity.51 

RECENT ADVANCES IN OSTEOBLASTS 

Type 2 diabetes T2D had adverse effects on bone healing 
via inhibition of osteoblast differentiation of skeletal stem 
cells and induction of hastened bone senescence, and that 
the hyperglycemia per se and not just insulin levels was 
detrimental for bone healing.52 Jing et al. have stated that 
despite some debate concerning the function of signaling 
pathways in osseous creation, the Wnt/β-catenin, Notch, 
PI3K/Akt/mTOR, Runx2, IGF, FGF, and BMP/TGF-β cas-
cades contribute to the efficacy of osseous regeneration by 
augmenting osteogenesis and maturation of osteoblasts.53 
A study has demonstrated that intraflagellar transport 140 
(IFT140) benefits fracture repair.54 Ahmad et al. have sug-
gested that Cdk5 controls osteoblast differentiation 
through MAPK pathway modulation. They stated that Cdk5 
is a possible therapeutic objective to manage osteoporosis 
and ameliorate fracture healing.55 

ENDOCHONDRAL BONE FORMATION - CHONDROCYTES 

Conversion of the cartilage callus to bone follows a highly 
regulated maturation of chondrocytes from a proliferative 
through a hypertrophic state.56 Chondrocyte hypertrophy 
is an essential state during endochondral ossification. Hy-
pertrophic chondrocytes are highly angiogenic and pro-
mote a second phase of vascular invasion into the cartilage 
callus by synthesizing VEGF,57‑59 PDGF,60 and PlGF (pla-
cental growth factor).61 The molecular stimulus for calci-
fication is not fully understood, but BMPs probably play a 
vital role in this process. BMP is expressed by both hyper-
trophic chondrocytes,62 and vascular endothelial cells,63 
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Table 1. Recent advances in mesenchymal stem cells (MSCs).        

AUTHORS 
[REFERENCE] 

YEAR FINDINGS 

Zhang H et al.39 2022 Early treatment of fractures with Bortezomib could improve fracture repair by augmenting the 
amount and proliferation of MSCs. 

Yang et al.40 2022 Bone marrow-derived MSCs (BM-MSCs)-extracellular vesicles (EVs) carrying miR-29b-3p were 
endocytosed by human umbilical vein endothelial cells (HUVECs), which subsequently suppressed 
the PTEN expression and triggered the PI3K/AKT pathway, thus facilitating HUVEC proliferation, 
migration, and angiogenesis, and eventually promoting fracture healing. 

Hu et al.41 2022 Human umbilical cord MSCs Wnt10b (HUCMSCsWnt10b) facilitate fracture healing via hastened 
hard callus formation, possibly due to improved osteogenic differentiation of PSCs and vessel 
growth. Thus, HUCMSCsWnt10b might be a promising treatment for long bone fractures. 

Peer et al.42 2022 MSCs endured hypo immunogenic after differentiation and have similar fracture healing 
potentiality, although allogeneic MSCs had better therapeutic potentiality than xenogenic MSCs. 

Wang K et al43 2022 This study showed the double effect of Aucubin in not only facilitating bone-fracture healing by 
controlling osteogenesis of hBM-MSCs partially via canonical bone morphogenetic protein-2 
(BMP2) / Smads signaling pathway but also suppressing oxidative stress damage partially via Nrf2/
HO1 signaling pathway. 

Laguna et al44 2022 MSCs from individuals with osteoporosis did not seem to have worse bone-regenerating abilities 
than MSCs from non-osteoporotic individuals of similar age. 

Eby et al.45 2022 This study suggested that alcohol could affect normal fracture healing through the mitigation of 
MSCs chondrogenic differentiation at the callus site. 

Wang F et al46 2022 These authors stated that overexpression of B-cell lymphoma 3 (Bcl-3) hastens bone fracture 
healing, a possible therapeutic objective for bone fracture management. B-cell lymphoma 3 (Bcl-3) 
is a crucial member of the IκB family, forming complexes with NF-κB on DNA. 

Zhang C et al.47 2022 These authors demonstrated that lncRNA AC132217.4 is an anabolic controller of bone marrow 
MSCs (BM-MSCs) osteogenesis and could be a potential therapeutic objective for ameliorating 
osseous regeneration. 

indicating that BMP signaling has both cell-autonomous 
and paracrine effects that might drive calcification. After 
calcification of the cartilage, bone formation happens. His-
tological staining in this vascularized transition area be-
tween cartilage and bone shows hypertrophic chondrocytes 
entrapped in a bone matrix next to the vasculature.64 As 
the cartilaginous matrix disappears and a bone matrix is 
laid down, the large round hypertrophic morphology of 
chondrocytes is gradually converted into morphology char-
acteristic of the osteocytes with cellular extensions existing 
in canaliculi.56,62‑64 Hypertrophic chondrocytes can be-
come osteoprogenitors and osteoblasts, directly contribut-
ing to woven osseous creation.65 
Bai et al. identified a long non-coding RNA (lncRNA) 

named hypertrophic chondrocyte Angiogenesis related 
lncRNA (HCAR). They demonstrated it to facilitate the en-
dochondral osseous repair by upregulating the expression 
of matrix metallopeptidase 13 (Mmp13) and vascular en-
dothelial growth factor alpha (VEGF-alpha) in hypertrophic 
chondrocytes. Lnc-HCAR knockdown in hypertrophic chon-
drocytes inhibited the cartilage matrix remodeling and di-
minished the CD31hiEmcnhi vessels amount in an osseous 
repair model.66 Stegen et al. have reported a crucial role of 
phosphoglycerate dehydrogenase (PHGDH)-dependent ser-
ine synthesis in preserving intracellular serine levels under 
physiological and serine-limited conditions, as appropriate 
serine levels are required to support chondrocyte prolifera-
tion throughout endochondral ossification.67 

CALLUS REMODELING AND OSTEOCLASTS 

A critical component of callus remodeling is bone degra-
dation by osteoclasts.64 Osteoclasts originate from 
hematopoietic monocyte/macrophage lineage precursors. 
Proliferation and survival of osteoclast precursors is trig-
gered by interaction between monocyte / M-CSF) and its 
receptor c-fms, which is present in both macrophages and 
osteoclasts. Bone marrow macrophages differentiate into 
osteoclasts upon stimulation with the Receptor Activator 
of Nuclear Factor kappaB Ligand (RANKL), which binds 
to its receptor, RANK. Osteoclast differentiation happens 
through multiple stages.64,68 Both MCSF and RANKL are 
needed throughout the differentiation process and con-
tribute to mature osteoclasts’ survival. MCSF and RANKL 
are both required and sufficient for osteoclast creation and 
function, but multiple other cytokines and signaling path-
ways influence osteoclast differentiation, maturation, and 
survival.69‑72 

RECENT ADVANCES IN OSTEOCLASTS 

Wu et al. have reported that small extracellular vesicles 
(sEV)-mediated miR-106a-5p transfer plays a crucial func-
tion in osteogenesis and indicates a new communication 
strategy between osteoclasts and bone MSCs (BMSCs).73 
BM-MSCs -based and macrophage-based cell treatment are 
regarded as hopeful approaches to facilitate fracture heal-
ing because of the amazing osteogenic potential of BM-
MSCs and the typical immunomodulatory role of 
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macrophages. Besides, evidence has also shown the impor-
tance of cross-talk between these two cell types in the frac-
ture healing process.74 

CONCLUSIONS 

The following conclusions can be drawn from the literature 
review: 

Forthcoming investigations on the value in clinical prac-
tice of Aucubin, Bortezomib, and human umbilical cord 
MSCs (HUCMSCs)Wnt10b to improve bone healing in man-
aging bone fractures are crucial. Future guidelines should 
consider that episodic alcohol exposure and Dexametha-
sone treatment may affect bone healing if employed in in-
dividuals who are being treated for a bone fracture. 
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1. Cross-talk between MSCs and macrophages is crucial 
in fracture healing. 

2. Rejuvenation of neutrophils and their EVs is associ-
ated with improved aged fracture healing. 

3. A new population of endosteal cells that are func-
tionally controlled through the modulation of CXCR4 
by IGF-1R signaling has been identified, and such 
control is crucial in osseous homeostasis and fracture 
healing. This information could help to develop new 
therapeutic methods by targeting CXCR4 signaling to 
manage nonunions. 

4. BM-MSCs-EVs carrying miR-29b-3p promote fracture 
healing. 

5. HUCMSCsWnt10b might be a promising treatment for 
long bone fractures. 

6. Aucubin facilitates bone-fracture healing by partially 
controlling the osteogenesis of hBM-MSCs via the 
canonical BMP-2 / Smads signaling pathway and by 
suppressing oxidative stress damage partially via the 
Nrf2/HO1 signaling pathway. 

7. Early treatment of fractures with bortezomib could 
improve fracture repair by augmenting the amount 
and proliferation of MSCs. 

8. Episodic alcohol exposure could affect normal frac-
ture healing through the mitigation of MSCs chon-
drogenic differentiation at the callus site. 

9. Dexamethasone diminishes the amount of 
macrophages at the injured zone during early osseous 
repair. 
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